Gibberellin regulation of fruit set and growth in tomato.

نویسندگان

  • Juan Carlos Serrani
  • Rafael Sanjuán
  • Omar Ruiz-Rivero
  • Mariano Fos
  • José Luis García-Martínez
چکیده

The role of gibberellins (GAs) in tomato (Solanum lycopersicum) fruit development was investigated. Two different inhibitors of GA biosynthesis (LAB 198999 and paclobutrazol) decreased fruit growth and fruit set, an effect reversed by GA(3) application. LAB 198999 reduced GA(1) and GA(8) content, but increased that of their precursors GA(53), GA(44), GA(19), and GA(20) in pollinated fruits. This supports the hypothesis that GA(1) is the active GA for tomato fruit growth. Unpollinated ovaries developed parthenocarpically in response to GA(3) > GA(1) = GA(4) > GA(20), but not to GA(19), suggesting that GA 20-oxidase activity was limiting in unpollinated ovaries. This was confirmed by analyzing the effect of pollination on transcript levels of SlCPS, SlGA20ox1, -2, and -3, and SlGA3ox1 and -2, encoding enzymes of GA biosynthesis. Pollination increased transcript content of SlGA20ox1, -2, and -3, and SlCPS, but not of SlGA3ox1 and -2. To investigate whether pollination also altered GA inactivation, full-length cDNA clones of genes encoding enzymes catalyzing GA 2-oxidases (SlGA2ox1, -2, -3, -4, and -5) were isolated and characterized. Transcript levels of these genes did not decrease early after pollination (5-d-old fruits), but transcript content reduction of all of them, mainly of SlGA2ox2, was found later (from 10 d after anthesis). We conclude that pollination mediates fruit set by activating GA biosynthesis mainly through up-regulation of GA20ox. Finally, the phylogenetic reconstruction of the GA2ox family clearly showed the existence of three gene subfamilies, and the phylogenetic position of SlGA2ox1, -2, -3, -4, and -5 was established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of auxin and gibberellin in tomato fruit set.

The initiation of tomato fruit growth, fruit set, is very sensitive to environmental conditions. Therefore, an understanding of the mechanisms that regulate this process can facilitate the production of this agriculturally valuable fruit crop. Over the years, it has been well established that tomato fruit set depends on successful pollination and fertilization, which trigger the fruit developme...

متن کامل

The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development

Transgenic tomato plants (Solanum lycopersicum L.) with reduced mRNA levels of AUXIN RESPONSE FACTOR 7 (SlARF7) form parthenocarpic fruits with morphological characteristics that seem to be the result of both increased auxin and gibberellin (GA) responses during fruit growth. This paper presents a more detailed analysis of these transgenic lines. Gene expression analysis of auxin-responsive gen...

متن کامل

Regulation of BZR1 in fruit ripening revealed by iTRAQ proteomics analysis

Fruit ripening is a complex and genetically programmed process. Brassinosteroids (BRs) play an essential role in plant growth and development, including fruit ripening. As a central component of BR signaling, the transcription factor BZR1 is involved in fruit development in tomato. However, the transcriptional network through which BZR1 regulates fruit ripening is mostly unknown. In this study,...

متن کامل

Cytokinin-Induced Parthenocarpic Fruit Development in Tomato Is Partly Dependent on Enhanced Gibberellin and Auxin Biosynthesis

Fruit set of plants largely depends on the biosynthesis and crosstalk of phytohormones. To date the role of cytokinins (CKs) in the fruit development is less understood. Here, we showed that parthenocarpic fruit could be induced by 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU, an active CK) in tomato (Solanumlycopersicum cv. Micro-Tom). The fresh weight of CPPU-induced parthenocarpic fruits was co...

متن کامل

Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis

In Arabidopsis, the miR171-GRAS module has been clarified as key player in meristem maintenance. However, the knowledge about its role in fruit crops like tomato (Solanum lycopersicum) remains scarce. We previously identified tomato SlGRAS24 as a target gene of Sly-miR171. To study the role of this probable transcription factor, we generated transgenic tomato plants underexpressing SlGRAS24, ov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 145 1  شماره 

صفحات  -

تاریخ انتشار 2007